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Dynamic permeability of electrically conducting fluids under magnetic fields in annular ducts
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The dynamic response of an electrically conducting fleither Newtonian or Maxwelligrflowing between

straight concentric circular cylinders under a constant radial magnetic field, is analyzed. The isothermal flow is
studied using the time Fourier transform, so that the dynamic generalization of Darcy’s law in the frequency
domain is obtained and analytical expressions for the dynamic permeability are derived. For the Newtonian
case, the range of frequencies where the dynamic permeability approaches the static value is enlarged the
smaller the gap between the cylinders and the higher the magnetic-field strength. For the Maxwell fluid, the
presence of the inner cylinder shifts the frequencies that lead to the enhancement of the real part of the dynamic
permeability to larger values and increases its maximum values relative to the case where the inner cylinder is
absent. In addition, the Ohmic dissipation causes the damping of the amplitude of the response.
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[. INTRODUCTION fluids are far from presenting a Newtonian behavior. That is
the case of the flow of blood in electromagnetic flowmeters
Simultaneous transport of mass, momentum, and enerdyl 3], which can be approximately modeled using a Maxwell
in electrically conducting fluids under electromagnetic fieldsfluid [15]. Also, in certain metallurgical processes, it is im-
is of great importance in many fields of science and technolportant to take into account that liquid metals at tempera-
ogy. Several examples of this kind of transport can be foundures, slightly higher than the melting point, present a non-
in a variety of duct geometries in nuclear reactors, electroNewtonian behavior [16]. Likewise, the motion of
magnetic pumps and flowmeters, and inkjet prin{drs4], multiphase dispersed conducting media fail to be described
among others. Whenever the transport involves frequencly the magnetohydrodynami¢®IHD) of Newtonian fluids.
dependent processes, a suitable description can be carried ¢ntidentally, many media may acquire or modify non-
in terms of the dynamic permeability function. Although the Newtonian properties by the application of strong magnetic
study of this function has been the topic of many previoudields, as is the case of magnetorheologid&R) fluids[17].
researches dealing with the flow of Newtonian as well as In this paper, we explore the dynamic permeability of
viscoelastic fluids in straight tubg¢S—10], it appears that the fully developed flows of electrically conducting fluids, either
influence of different tube geometries has not been widel\Newtonian or Maxwellian, in a horizontal annular duct under
investigated. This is not the case for steady-state problems constant radial magnetic field. We are concerned, as in
where flow and heat transfer have been extensively studiedrdinary MHD, with the motion of nonferromagnetic media,
in a variety of geometries, for instance, annular dyétg. and accordingly the magnetic permeability of the fluid is
Besides, the dynamic permeability of flows of electrically assumed to be that of the vacuumy wq. The inductionless
conducting fluids in tubes under electromagnetic fields haspproximation is assumgd8], so that magnetic fields in-
not received any attention either. Therefore, the objective ofluced by the currents circulating in the fluid are neglected.
this paper is twofold. First, to explore the effect on the dy-These currents, however, interact with the magnetic field and
namic permeability of altering the common single tube gejproduce a Lorentz force that alters the fluid motion. Also,
ometry by introducing an inner solid cylinder, in such a waythey are an additional source @®hmic) dissipation in the
that the flow takes place in an annular duct, and second, tthuid, which is characterized by a dissipative time scale
discern how the presence of a constant magnetic field affec{Soule timg. With the aim at getting analytical expressions,
the dynamic permeability in tube flows when the fluid is the problem is transformed to the frequency domain through
electrically conducting. a time Fourier transform and a dynamic generalization of
The understanding of how electromagnetic fields influ-Darcy’s law is obtained. Thus, analytic expressions for the
ence the dynamic permeability may be of relevance in physifrequency-dependent permeability for the mean flow of
ological and metallurgical applications, particularly those re-Newtonian and Maxwellian fluids are used to explore the
lated to the development of electromagnetic pumps andynamic behavior in a wide range of frequencies. Specific
flowmeters, which are also widely used in the chemical andransient regimes as well as entrance effects are not consid-
nuclear industries. In such devices, flows of conducting fluered in this paper. However, transient problems can be de-
ids under magnetic fields take place in frequency dependescribed using the inverse Fourier transform. The main objec-
pressure drop$l2-14. Some of these flows involve the tive here is to characterize the effects of both the annular gap
motion of Newtonian fluids, but in many practical situations of the duct and the magnetic-field strength on the dynamic
permeability of conducting fluids in tubes. In fact, these pa-
rameters modify the flow structure through boundary condi-
*Electronic mail: scg@cie.unam.mx tions and an additional body force. Evidently, they also in-
"Electronic mail: antonio@servidor.unam.mx fluence the dissipation within the flow. A particular
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interrogation to be answered is how the resonant behaviowherey is the dynamic viscosity of the fluid. In turn, Ohm'’s

that leads to the enhancement of the dynamic permeability ifaw establishes that

Maxwell fluids in tubeg6—8] is affected by geometrical fac- )

tors and the magnetic interaction. j=o(E+uxB), (4)
The organization of the paper is as follows. In the Sec. I, . . o . .

the formulation of the problem is presented and the dynami(‘fvlherga ;S :ge elecércljc_:gl conductlwty(?f thﬁ ﬂu'? ariglis the .

permeability of a Newtonian fluid in an annular duct under a]? ei‘gtrlc 1ed. Ir) ah ition, we consider .t €e ectromagnetic

radial magnetic field is calculated. Results for different an- ield equations in the quasistatic approximation, narie(y,

nular gaps and magnetic field strengths are also discussed. In JB

Sec. lll, the calculation of the dynamic permeability in the VXE=——, (5)

former conditions is carried out but considering a viscoelas- at

tic fluid modeled through the linear Maxwell model. A para-

metric study considering different gaps, magnetic-field

strengths, and elastic relaxation parameters is performed. Fi-

nally, in Sec. IV concluding remarks are stated.

VXB=uj, (6)
V-B=0. (7)

In principle, Eqs(1)—(7) are coupled due to electromagnetic

II. DYNAMIC PERMEABILITY IN A NEWTONIAN FLUID induction effects. Here we assume that the axial induced

) ] ) field b is much smaller than the applied field. This occurs
. Let us qonS|der the |§0th¢rmal Iamln:_:\r flow _ofg NeWto”'provided the magnetic Reynolds numb&;,= uaUL, is
ian, electrically conducting incompressible fluid in the gapy,ch less than unity, where is the magnetic permeability
formed by two coaxial infinite cylinders. A transverse radial ¢ e fluid, andU and L are characteristic velocity and
magnetic field is assumed to be imposed and the walls of th%ngth of the flow[18]. Hence, under the approximation
cylinders are assumed to be electrically insulated. The &R <1, b can be neglected. This means that the magnetic

perimental conditions required to obtain a radial magnetigie|q is unperturbed by the fluid motion and satisfies the mag-
field in this geometry are discussed in REf9]. The axial [ atostatic equationg 8], i.e.

motion of the conducting fluid in the presence of the applied

radial magnetic fieldB,, induces an electric current density V-B=0, VxB=0. 8

in the polar direction. In turn, this current generates an axial

magnetic fieldb, that can be understood as a perturbationHere, we consider that the magnetic field is given By
produced by the fluid motion. The interaction of the current=B,g, , whereB, is constant and, is the unit vector in the
density with the total fieldB=B,+b, originates a Lorentz radial direction. Since the magnetic field is constant, Fara-
force, namelyj X B, wherej is the electric current density. day’s law of induction5) leads tovV X E=0, and the electric
The radial component of the field gives rise to an axial forcefield becomes potential, namelig=—V ¢, where ¢ is the
that opposes the fluid motion and, therefore, for a given flonelectrostatic potential. In the analyzed case, there are no ex-
rate the axial pressure gradient that drives the flow must bternal electric fields, therefor&=0, which means that the
stronger than the one required in the absence of magnetazimuthal current loops form perfect short circuits. Under
field. In turn, the interaction of the current and the axialthese conditions Ohm’s law reduces to

induced field produces a radi@trotationa) force, which is )

balanced by a radial pressure gradient. Thus, from the in- j=ouxB. 9

compressibility condition, the continuity equation reads Substituting Eqs(3) and (9) in Eq. (2), and taking into ac-

count that the axial velocity componen(r,t), is the only

V-u=0. (1) one, we find that the momentum balance equation becomes

Since we consider a fully developed flow, the nonlinear con- v 1op 7 oB2

. . . _ 2 o
vective term vanishes and the momentum balance equation o ; 97 + ;V v— P v. (10
reduces to

We take the time Fourier transform of E@{.0) and obtain

au _
=—Vp—V.7+]XB, (2

P vav+ 2 !
7

iw— —
4

V_l(?P 11

where p is the mass density of the fluid, is the velocity
field, p is the pressure field, and represents the viscous
stress tensor. Notice that the linearized E). corresponds
to the approximation of low Reynolds number flows. The
constitutive relations fo# andj must also be supplied. For a
Newtonian incompressible fluid we have

whereV and P stand for the Fourier transform of and p,
respectively, andi]:p/aBg is the Joule time that character-
izes the Ohmic dissipation in the fluid. The solution of Eq.
(11) under nonslip boundary conditions is given by

P
0z’

V(I’,w)= Jo(ﬂnr)_CnNo(ﬂnr)

= — 7]VU, (3) ﬂﬁﬁ[ Jo(Bna)_CnNo(ﬂna) (12)
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whereJ,(x) andN,(x) are the zeroth-order Bessel functions

of the first and second kind, respectively, and 1.01 ST
. \\ ~~~~~~~
Bn= B(iw— E) — Jo(Bnd) ~ Jo(Bnb) 0.8 ~ \\\ Real Imag
"l 4/l " No(Bra) —No(Bnb)’ - . R=02 —— —o—

with a and b being the radius of the outer and inner cylin- f? 061

ders, respectively. 7y
The average flow rate in the cross section of the annular x~ 0-4
channel is given by 1

*.

0.2
Q=27 [Virwrar=-"12 g
w)=2m ro)rdr=— —,
b n 9z 0.0
where the frequency-dependent permeabiity ) can be o 20 40 & 80
expressed as °
4 . —
K (0)=— a _ 2[J1(Nwn) — CNy (V@) ] FIG. 1. Real and imaginary parts of the dimensionless dynamic
" (o Vo [Jo(Vw ) — CaNg (V) ] permeability of a Newtonian fluid as a function of the normalized

frequency parameten? for M=0 and different values of the di-
2[J1(RV®,) —CyNi(VRw )] ) ] mensionless gap.
RV [Jo(\wn) ~ CaNo(Vwrp)]/ |

2

Let us first consider the flow in the absence of a magnetic
(14) field (M=0). In that case, the dynamic permeability reduces

to
The dimensionless parameters appearing in @4) are
given by lim K2 (o)
mn=iw;’—M2, w;’=wtv, M0
a? t b 8
_pa 2_p22% _ _0 Y 22
= M<“=Bga _— R . iop (1-R*+(1-R%)*/InR)

Notice thatw? =pwa®/ 7 is the ratio of the characteristic

o ABGieon) - CaNiio)]
time for viscous diffusion of momenturty and the time Vior[Jo(Viwr)—CyNo(Viwn)]
scale of the imposed pressure gradiens.1dh; may also be

interpreted as a Reynolds number based on the characteristic =~ R2( 1 2[J1(Ryiwp)—CyNy(Ryiwy)] ) ]

velputy wa. Inturn,Mis the Hartmann n_un_1be_r that gives an R+/i o [Jo f @*)—CpNof i w* 0]
estimate of the ratio of the characteristic time of viscous

dissipation compared to the characteristic time of the mag- 17
netic damping due to electric currents circulating in the fluid.

It is convenient to normalize the dynamic permeability usingwhere for this limit

the static permeabilitik ,(0), calculated for the steady flow,

ie., c _Jo(Viw:)_Jo(R\/iw:)
K () " No(Viwf)—No(Ryiw¥) '

Ki (oh)= % ) (15
A In Fig. 1 the real and imaginary parts of the dynamic
where of course permeability as functions of the dimensionless frequency pa-
rameterw} are shown foM =0 and different values of the
mat 2[J1(iM)—CgN(iM)] dimensionless gaR. For small values oR, corresponding to
Kn(0)= W[ 1- iM[Jo(iM)— CoNo(iM)] large gaps between the cylinders, the real part of the dynamic
permeability takes the maximum value of 1 at zero frequency
) 2[J1(IRM)—=CoN4(IRM)] and decreases smoothly to zero as dffeincreases. This is
-R (1_ IRM[Jg(iM)— CoNo(iM )]) ! the typical relaxing viscous behavior observed in Newtonian
16 flow in tubes. In fact, in the limiR—0, Eq.(17) reduces to
3o1M)~ 3RM) gy [y 20T
0= - p . lim Kn(wn)_ L% 1 P— — % |’ (18)
No(iM)— Ng(iRM) M,R—0 iwk iw*J(\iok)
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which corresponds to the dynamic permeability obtained in

Ref.[5] for the flow of a Newtonian fluid in a tube. From the 1.0 gy

imaginary part of the dynamic permeability, it can be ob- 1 \

served that for small values & there is a nonzero relative 0.8 \ Real Imag
\

phase between the flow and the pressure gradient, except for
very large frequencies. On the other hand, as the parameter

= 0.6
increasegi.e., the gap is reducgdhe rate of decrease of the 3
real part ofK} (w) as the frequency grows is lessened. Ac- D o4
tually, for very small gapse.g.,R=0.8) the real part of the <]

dynamic permeability, R&} (w)}, approaches 1 in a wide

range of frequencies and decays to zero for very large fre- 021

guencies. Therefore, as the gap decreases, two main effects

are observed: the reduction of the dimensional dynamic and 0.0

static permeabilities and the enlargement of the spectrum of e —

perturbations that are able to pass through the fluid; likewise, 0 100 200 300 400 500

the relative phase between the flow and the pressure gradient O

decreases. Evidently, in the linfiR—1, K,,(0)=K,(w)=0

and it can be shown from E@17) that this occurs in such a

way thtK:(w.:)_)l' . . frequency parametew) for R=0.2 and different values of the
It is illustrative to look at the different terms in E¢L1), Hartmann numbeM.

which establishes the balance among inertial, pressure, vis-

cous, and magnetic forces in Fourier space. In dimensionlesge real and imaginary parts of the dynamic permeability for

FIG. 2. Real and imaginary parts of the dimensionless dynamic
permeability of a Newtonian fluid as a function of the normalized

form, this equation can be expressed as R=0.1 and Hartmann numbers 0.1, 10, and 100. Kbr
9B =0.1 the magnetic interaction is negligible and the relaxing

—iwﬁ\?= M2 V27— M2V, (19) viscous behavior is again observed: .In @urn, kb= 10, the
97 relaxation of the dynamic permeability is less pronounced,

while for M =100, R¢K? (w})} approaches 1. In fact, it is

whereV and P are normalized by a characteristic velocity observed from Eq(14) that K (w) reduces taK(0) when

and pressurel) and oB2Ua, respectively. In turn, coordi- M?>w}, . In that case, the acceleration force in Eg9)
natest andZ are normalized by. In the absence of a mag- P€comes negligible, producing a quasisteady flow with well-
netic field (M =0), the balance is established among the in differentiated regions: the core,.where the magnetic force is
ertial or local acceleration on the left-hand side of Erp) ~ Palanced by the pressure g[ald|eny, and the boundary layers
and the pressure gradient and viscous forces on the rightHiartmann layers with &(M ™) thicknes$ where viscous
hand side. Due to the inertial term, the velocity field will not €f€Cts are important. From the asymptotic expressions of
generally be in phase with the pressure gradient. When thessel functions for large values of the argument, it is found
gap between the cylinders is reduced, viscous effects afgat forM>1,

increased as the boundary layers attached to each cylinder "

get closer. Thereforg, _for very small gaps, the_acceleratlon K, (w0)=K(0)= W_(l_Rz), (20)
term becomes negligible compared to the viscous term, 2

which is only balanced by the pressure gradient, as in the

static flow. Evidently, the acceleration term will also be neg-which clearly vanishes aM —o. Here it is important to
ligible when w* <1. Notice that as long as the inertial term stress that the conditiod — > enlarges the frequency range
has some influence, the dynamic permeability will relax forwhere the dynamic permeability approaches the static value.
some (large frequency and a nonzero relative phase will In the nexj section_ we Furn our attention to the simplest
exist. Whenw?>1, the flow behavior is more complicated. model of a viscoelastic fluid.

In that case, in the core of the flow, the acceleration term is

dominant and is balanced by the pressure gradient, whildll. DYNAMIC PERMEABILITY IN A MAXWELL FLUID

near the walls of the cylinders, thin boundary layers are

formed where viscous effects are not negligible. It can be In order to analyze the dynamic permeability of a vis-
shown from an asymptotic analysihat forw*>1, the dy-  coelastic fluid under an imposed magnetic field, we use the
namic permeability decreases as»}/in the core and as linear form of the Maxwell fluid, namely,

e_“’:/w: in the boundary layers. Therefore, in the limit a7
wf —, REK? (wF)}—0. t
Let us turn our attention to the MHD case. Figure 2 shows
where t,, is the Maxwell relaxation time. In the limit,,
—0, the Newtonian behaviaf3) is recovered. Using Egs.
The flow in the limit caseR=0 is treated in Ref[21]. (2), (9), and(21), the equation of motion is obtained, namely,

mEZ—’r]VU—T, (21
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1 14t d\ap
— = 14+ty=|—=+
p Mat) oz

J
(o)
- 1+t,—|v.
( tm&t>v

Performing the time Fourier transform, we get

v
th—=

at?

Jdv

L2 g2
g Vv

(22

(1-iwt,) 0P

2 2
VAV BV = —— = (23

tm

tj

tn

y

(wtp)?——+iwty 1+

"

The solution to Eq(23) that satisfies nonslip boundary con-
ditions at the walls of the cylinders is given by

tm

v _(l_iwtm) _JO(er)_CmNO(er) i
)= | 734 Bud)— ColNo( )| 72
(24)
where
c Jo(Bmd) = Jo( Bmb)

™ No(Bm@) — No(Bub)

Hence, calculating the average flow rate through @&@),
the dynamic permeability can be written as

Km(®)

ma*(1—iwt,,)

ok

-R?1

aw,

2 (Vawg) — CoNi(Vawy)]

Vaw [ Jo(Vaw ) — CuNo(Vawy)]
2[3:(RVaw ) — CuNi (RVaw,,) | H

 RVaw [ Jo(Vawm) — CoNo(Vaw 1]’

(29
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FIG. 3. Real part of the dimensionless dynamic permeability of
a Maxwell fluid as a function of the normalized frequency param-
eter w?, for different values of the dimensionless g@pThe mag-
netic field is absent and the Deborah numbesis0.1.

paper, we consider values afmuch smaller than 1, so that
elastic effects are intense though modulated by the magnetic
interaction and the gap between the cylinders. Cases where
a>12 are analogous to the Newtonian case analyzed in the
previous section.

Similar to the Newtonian case, we normalize the dynamic
permeability with the static permeability given by EQ5)
evaluated aw;, =0, i.e.,

Km(®)
Km(0)

Kin(om) =

(27)

Evidently, when the Maxwell relaxation time vanishes, (
—0), Eq.(27) reduces to Eq(15), i.e., K} —K} . Another
important limit is obtained when botM —0 andR—0. In
such a case, we get the dynamic permeability reported in
Ref.[7] for a viscoelastic fluid in a tube, namely,

lim Ky *)——8(1_iw:n) 1- 2iarw)
M’!ILO m(a)m - aw JZ;E;30(¢;;E;;) ’

(28)

where, in this case, the dimensionless parameters are givé¥herew =(wp)?+iwr,. Figure 3 shows the real part of the

by
2
mm:(w;)zﬂ-iw;— 7(1—iw’r;),

(26)

_pa® ity

*_ = —=
op=ot,, « ot

with o~ ! being the Deborah number. The parametede-

dimensionless dynamic permeabil{7) as a function of the
dimensionless frequenayy, for M=0, «=0.1, and differ-

ent values of the gap paramefrThe casdR=0 calculated
from Eq.(28), is also shown for comparison purposes. Since
the magnetic interaction is absent, Fig. 3 displays essentially
the effects of varying the space between the cylinders using a
fluid with predominant elastic behavior. The appearance of
multiple resonant frequencies, where the real part of the per-
meability increases, is observed. In all curves, the magnitude

termines whether the elastic or viscous behavior predomief the first peak is the highest and that of subsequent peaks
nates. For the flow of Maxwell fluids in tubes in the absencesteadily decays to zero, as in previous studied cf8ges.
of electromagnetic interaction, it was established that for valComparing the curv&®=0 with those withR+ 0, two main

ues ofa bigger than the critical value.=11.64, a dissipa-
tive behavior prevails, while for<<a the prevalent elastic
behavior leads to a resonance at a given frequgicyn this

effects can be readily attributed to the presence of an inner
coaxial cylinder. First, the shift of the frequencies that lead
to the enhancement of the real part of the dynamic perme-
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maximum values of the permability and these parameters is
not a simple matter and lies beyond the scope of the present
investigation.

IV. CONCLUSION

In this paper, we have extended previous investigations
on the dynamic permeability of flows in tubes by incorporat-
ing new geometric aspects and the existence of electromag-
netic interaction. Specifically, we explored the dynamic be-
havior of the permeability of annular ducts saturated with
electrically conducting fluids, either Newtonian or Maxwell-
ian, under a constant radial magnetic field. In the absence of
a magnetic field, the presence of the inner cylinder results
advantageous for flows of Newtonian fluids in the sense that

K_[01/K_[0]

0.1

0 2 a0 e 80 the range of frequencies, where the dynamic permeability
o values are close to the static value, is expanded. When the
" magnetic field is present, this frequency range is even wider.

FIG. 4. Real part of the dimensionless dynamic permeability of!N fact, for high-magnetic field strengths the local accelera-
a Maxwell fluid as a function of the normalized frequency param-tion is negligible and the permeability becomes that of a

eterw?, for different Hartmann numbers. The the dimensionless ga[gu?-SiSteady flow within a very large range of frequencies.
is R=0.3 and the Deborah numberds=0.1. This fact could find application in the enhancement of lubri-

cation systems using magnetic fields.
ability to larger values, and second, the presence of resonant FOr Maxwellian fluids in the absence of a magnetic field,
frequencies of small intensity between two higher peaks thaf!€ inner cylinder modifies the spectrum of resonant frequen-
exceed the maximum values of the permeability obtained fof'€S and changes the monotonic decay of the permeability

_ = peaks. In fact, compared to the case of a single tube, the
ngeﬁizdlq\lot(i)éel_:ﬁgtz’tézefifgﬂlg;imsn??gr tt?z Icaarsgee(r) tgiesd'f frequencies at which the dynamic permeability is enhanced,
I. q ¢ tude hiaher than the stati .I Th.are shifted to larger values. Further, at some resonant fre-
several oraers of magnitude higher than e static vaiue. 'auencies, the maximum values of the permeability exceed

fact_ might be important for lubrication stu_die_s unc_ier cyclic those reached in the flow in a single tub@, a result that,
regimes. Although not shown, corresponding imaginary partg,cigentally, may be of practial importance. It must be
of K,(wr,) present also a shift in the phase frequencies withstressed that in the particular case of a zero mean perturba-
respect to the single tube casd. tion, no enhancement of the dynamic permeability will be

Figure 4 displays the effect of the magnetic interaction onproduced. However, whenever a nonzero mean periodic per-
the dynamic permeability. It shows the real partkjf as a  turbation produces a net flow rate, the choice of a pressure
function of wy, for R=0.3, «=0.1, and different values of pulse with the appropriate frequency may cause a dramatic
the Hartmann numbevl. Clearly, the effect of the magnetic enhancement on the dynamic permeability according to Eq.
field is totally dissipative. A$ grows from 0 to 1 the peaks (27). On the other hand, the existence of magnetic field re-
of the dynamic permeability are attenuated. Fbr=1, only  sults is disadvantageous for the enhancement of the dynamic
the first peak persists and f€(w})} decays monotoni- permeability. In this case, the dissipative behavior of the
cally to zero for large frequencies. Notice, however, that thenagnetic field dominates over the elastic effects and a drastic
rate of decrease of the permeability is smaller the larger theeduction of the enhanced dynamic permeability is observed.
Hartmann number. In the limit d¥l — o, whatever the value Nevertheless, a wide frequency range that leads to dynamic
of a, the elastic behavior is completely inhibited by the permeability values higher than the static value is still
Ohmic dissipation an& ¥ — 1 for smallw? and goes to zero Present.
whenw}—, as in the Newtonian case.

In the case of a single tube in the absence of a magnetic
field, a simple relationship between the maximum permeabil- This research was partially supported by DGAPA-UNAM
ity values and the Deborah number was foddl In the  and CONACYT under projects IN103100 and GOO44E, re-
present case, however, the maximum value ofkRgw?)} spectively. The authors thank Professor Mariangeo de
depends on three independent parameters, namel, and  Haro for a critical reading of the manuscript and useful sug-
R; therefore the determination of a relation between thegestions.
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