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Dynamic permeability of electrically conducting fluids under magnetic fields in annular ducts

Sergio Cuevas* and J. Antonio del Rı´o†

Centro de Investigacio´n en Energı´a, UNAM, Apartado Postal 34, Temixco, Morelos 62580, Mexico
~Received 14 December 2000; published 25 June 2001!

The dynamic response of an electrically conducting fluid~either Newtonian or Maxwellian! flowing between
straight concentric circular cylinders under a constant radial magnetic field, is analyzed. The isothermal flow is
studied using the time Fourier transform, so that the dynamic generalization of Darcy’s law in the frequency
domain is obtained and analytical expressions for the dynamic permeability are derived. For the Newtonian
case, the range of frequencies where the dynamic permeability approaches the static value is enlarged the
smaller the gap between the cylinders and the higher the magnetic-field strength. For the Maxwell fluid, the
presence of the inner cylinder shifts the frequencies that lead to the enhancement of the real part of the dynamic
permeability to larger values and increases its maximum values relative to the case where the inner cylinder is
absent. In addition, the Ohmic dissipation causes the damping of the amplitude of the response.
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I. INTRODUCTION

Simultaneous transport of mass, momentum, and en
in electrically conducting fluids under electromagnetic fie
is of great importance in many fields of science and techn
ogy. Several examples of this kind of transport can be fou
in a variety of duct geometries in nuclear reactors, elec
magnetic pumps and flowmeters, and inkjet printers@1–4#,
among others. Whenever the transport involves freque
dependent processes, a suitable description can be carrie
in terms of the dynamic permeability function. Although th
study of this function has been the topic of many previo
researches dealing with the flow of Newtonian as well
viscoelastic fluids in straight tubes@5–10#, it appears that the
influence of different tube geometries has not been wid
investigated. This is not the case for steady-state probl
where flow and heat transfer have been extensively stu
in a variety of geometries, for instance, annular ducts@11#.
Besides, the dynamic permeability of flows of electrica
conducting fluids in tubes under electromagnetic fields
not received any attention either. Therefore, the objective
this paper is twofold. First, to explore the effect on the d
namic permeability of altering the common single tube g
ometry by introducing an inner solid cylinder, in such a w
that the flow takes place in an annular duct, and second
discern how the presence of a constant magnetic field aff
the dynamic permeability in tube flows when the fluid
electrically conducting.

The understanding of how electromagnetic fields infl
ence the dynamic permeability may be of relevance in ph
ological and metallurgical applications, particularly those
lated to the development of electromagnetic pumps
flowmeters, which are also widely used in the chemical a
nuclear industries. In such devices, flows of conducting
ids under magnetic fields take place in frequency depen
pressure drops@12–14#. Some of these flows involve th
motion of Newtonian fluids, but in many practical situatio
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fluids are far from presenting a Newtonian behavior. Tha
the case of the flow of blood in electromagnetic flowmet
@13#, which can be approximately modeled using a Maxw
fluid @15#. Also, in certain metallurgical processes, it is im
portant to take into account that liquid metals at tempe
tures, slightly higher than the melting point, present a n
Newtonian behavior @16#. Likewise, the motion of
multiphase dispersed conducting media fail to be descri
by the magnetohydrodynamics~MHD! of Newtonian fluids.
Incidentally, many media may acquire or modify no
Newtonian properties by the application of strong magne
fields, as is the case of magnetorheological~MR! fluids @17#.

In this paper, we explore the dynamic permeability
fully developed flows of electrically conducting fluids, eith
Newtonian or Maxwellian, in a horizontal annular duct und
a constant radial magnetic field. We are concerned, a
ordinary MHD, with the motion of nonferromagnetic medi
and accordingly the magnetic permeability of the fluid
assumed to be that of the vacuum,m5m0. The inductionless
approximation is assumed@18#, so that magnetic fields in
duced by the currents circulating in the fluid are neglect
These currents, however, interact with the magnetic field
produce a Lorentz force that alters the fluid motion. Als
they are an additional source of~Ohmic! dissipation in the
fluid, which is characterized by a dissipative time sca
~Joule time!. With the aim at getting analytical expression
the problem is transformed to the frequency domain throu
a time Fourier transform and a dynamic generalization
Darcy’s law is obtained. Thus, analytic expressions for
frequency-dependent permeability for the mean flow
Newtonian and Maxwellian fluids are used to explore t
dynamic behavior in a wide range of frequencies. Spec
transient regimes as well as entrance effects are not con
ered in this paper. However, transient problems can be
scribed using the inverse Fourier transform. The main ob
tive here is to characterize the effects of both the annular
of the duct and the magnetic-field strength on the dyna
permeability of conducting fluids in tubes. In fact, these p
rameters modify the flow structure through boundary con
tions and an additional body force. Evidently, they also
fluence the dissipation within the flow. A particula
©2001 The American Physical Society13-1
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interrogation to be answered is how the resonant beha
that leads to the enhancement of the dynamic permeabilit
Maxwell fluids in tubes@6–8# is affected by geometrical fac
tors and the magnetic interaction.

The organization of the paper is as follows. In the Sec.
the formulation of the problem is presented and the dyna
permeability of a Newtonian fluid in an annular duct unde
radial magnetic field is calculated. Results for different a
nular gaps and magnetic field strengths are also discusse
Sec. III, the calculation of the dynamic permeability in t
former conditions is carried out but considering a viscoel
tic fluid modeled through the linear Maxwell model. A par
metric study considering different gaps, magnetic-fie
strengths, and elastic relaxation parameters is performed
nally, in Sec. IV concluding remarks are stated.

II. DYNAMIC PERMEABILITY IN A NEWTONIAN FLUID

Let us consider the isothermal laminar flow of a Newto
ian, electrically conducting incompressible fluid in the g
formed by two coaxial infinite cylinders. A transverse rad
magnetic field is assumed to be imposed and the walls of
cylinders are assumed to be electrically insulated. The
perimental conditions required to obtain a radial magne
field in this geometry are discussed in Ref.@19#. The axial
motion of the conducting fluid in the presence of the appl
radial magnetic field,B0, induces an electric current densi
in the polar direction. In turn, this current generates an a
magnetic fieldb, that can be understood as a perturbat
produced by the fluid motion. The interaction of the curre
density with the total field,B5B01b, originates a Lorentz
force, namely,j3B, wherej is the electric current density
The radial component of the field gives rise to an axial fo
that opposes the fluid motion and, therefore, for a given fl
rate the axial pressure gradient that drives the flow mus
stronger than the one required in the absence of magn
field. In turn, the interaction of the current and the ax
induced field produces a radial~irrotational! force, which is
balanced by a radial pressure gradient. Thus, from the
compressibility condition, the continuity equation reads

“•u50. ~1!

Since we consider a fully developed flow, the nonlinear c
vective term vanishes and the momentum balance equa
reduces to

r
]u

]t
52“p2“•t1 j3B, ~2!

wherer is the mass density of the fluid,u is the velocity
field, p is the pressure field, andt represents the viscou
stress tensor. Notice that the linearized Eq.~2! corresponds
to the approximation of low Reynolds number flows. T
constitutive relations fort andj must also be supplied. For
Newtonian incompressible fluid we have

t52h“u, ~3!
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whereh is the dynamic viscosity of the fluid. In turn, Ohm’
law establishes that

j5s~E1u3B!, ~4!

wheres is the electrical conductivity of the fluid andE is the
electric field. In addition, we consider the electromagne
field equations in the quasistatic approximation, namely@20#,

“3E52
]B

]t
, ~5!

“3B5m j , ~6!

“•B50. ~7!

In principle, Eqs.~1!–~7! are coupled due to electromagnet
induction effects. Here we assume that the axial indu
field b is much smaller than the applied field. This occu
provided the magnetic Reynolds number,Rm5msUL, is
much less than unity, wherem is the magnetic permeability
of the fluid, andU and L are characteristic velocity an
length of the flow @18#. Hence, under the approximatio
Rm!1, b can be neglected. This means that the magn
field is unperturbed by the fluid motion and satisfies the m
netostatic equations@18#, i.e.,

“•B50, “3B50. ~8!

Here, we consider that the magnetic field is given byB
5Boer , whereBo is constant ander is the unit vector in the
radial direction. Since the magnetic field is constant, Fa
day’s law of induction~5! leads to“3E50, and the electric
field becomes potential, namely,E52“f, wheref is the
electrostatic potential. In the analyzed case, there are no
ternal electric fields, therefore,E50, which means that the
azimuthal current loops form perfect short circuits. Und
these conditions Ohm’s law reduces to

j5su3B. ~9!

Substituting Eqs.~3! and ~9! in Eq. ~2!, and taking into ac-
count that the axial velocity componentv(r ,t), is the only
one, we find that the momentum balance equation becom

]v
]t

52
1

r

]p

]z
1

h

r
“

2v2
sBo

2

r
v. ~10!

We take the time Fourier transform of Eq.~10! and obtain

“

2V1
r

h S iv2
1

t j
DV5

1

h

]P

]z
, ~11!

whereV and P stand for the Fourier transform ofv and p,
respectively, andt j5r/sBo

2 is the Joule time that characte
izes the Ohmic dissipation in the fluid. The solution of E
~11! under nonslip boundary conditions is given by

V~r ,v!5
1

hbn
2 F12

Jo~bnr !2CnNo~bnr !

Jo~bna!2CnNo~bna!G]P

]z
, ~12!
3-2
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whereJo(x) andNo(x) are the zeroth-order Bessel functio
of the first and second kind, respectively, and

bn5F r

h S iv2
1

t j
D G , Cn5

Jo~bna!2Jo~bnb!

No~bna!2No~bnb!
,

with a and b being the radius of the outer and inner cyli
ders, respectively.

The average flow rate in the cross section of the ann
channel is given by

Q~v!52pE
b

a

V~r ,v!r dr 52
Kn~v!

h

]P

]z
, ~13!

where the frequency-dependent permeabilityKn(v) can be
expressed as

Kn~v!52
pa4

Ãn
H 12

2@J1~AÃn!2CnN1~AÃn!#

AÃn@Jo~AÃn!2CnNo~AÃn!#

2R2S 12
2@J1~RAÃn!2CnN1~ARÃn!#

RAÃn@Jo~AÃn!2CnNo~AÃn!#
D J .

~14!

The dimensionless parameters appearing in Eq.~14! are
given by

Ãn5 ivn* 2M2, vn* 5vtv ,

tv5
ra2

h
, M25B0

2a2
s

h
5

tv

t j
, R5

b

a
.

Notice thatvn* 5rva2/h is the ratio of the characteristi
time for viscous diffusion of momentumtv and the time
scale of the imposed pressure gradient 1/v. vn* may also be
interpreted as a Reynolds number based on the characte
velocity va. In turn,M is the Hartmann number that gives a
estimate of the ratio of the characteristic time of visco
dissipation compared to the characteristic time of the m
netic damping due to electric currents circulating in the flu
It is convenient to normalize the dynamic permeability us
the static permeabilityKn(0), calculated for the steady flow
i.e.,

Kn* ~vn* !5
Kn~v!

Kn~0!
, ~15!

where of course

Kn~0!5
pa4

M2 H 12
2@J1~ iM !2C0N1~ iM !#

iM @J0~ iM !2C0N0~ iM !#

2R2S 12
2@J1~ iRM!2C0N1~ iRM!#

iRM@J0~ iM !2C0N0~ iM !# D J ,

~16!

C05
J0~ iM !2J0~ iRM!

N0~ iM !2N0~ iRM!
.

01631
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Let us first consider the flow in the absence of a magn
field (M50). In that case, the dynamic permeability reduc
to

lim
M→0

Kn* ~vn* !

52
8

ivn* „12R41~12R2!2/ lnR…

3H 12
2@J1~Aivn* !2CnN1~Aivn* !#

Aivn* @J0~Aivn* !2CnN0~Aivn* !#

2R2S 12
2@J1~RAivn* !2CnN1~RAivn* !#

RAivn* @J0~Aivn* !2CnN0~Aivn* !#
D J ,

~17!

where for this limit

Cn5
J0~Aivn* !2J0~RAivn* !

N0~Aivn* !2N0~RAivn* !
.

In Fig. 1 the real and imaginary parts of the dynam
permeability as functions of the dimensionless frequency
rametervn* are shown forM50 and different values of the
dimensionless gapR. For small values ofR, corresponding to
large gaps between the cylinders, the real part of the dyna
permeability takes the maximum value of 1 at zero freque
and decreases smoothly to zero as thevn* increases. This is
the typical relaxing viscous behavior observed in Newton
flow in tubes. In fact, in the limitR→0, Eq.~17! reduces to

lim
M ,R→0

Kn* ~vn* !52
8

ivn*
H 12

2@J1~Aivn* !#

Aivn* Jo~Aivn* !
J , ~18!

FIG. 1. Real and imaginary parts of the dimensionless dyna
permeability of a Newtonian fluid as a function of the normaliz
frequency parametervn* for M50 and different values of the di
mensionless gapR.
3-3
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which corresponds to the dynamic permeability obtained
Ref. @5# for the flow of a Newtonian fluid in a tube. From th
imaginary part of the dynamic permeability, it can be o
served that for small values ofR there is a nonzero relativ
phase between the flow and the pressure gradient, excep
very large frequencies. On the other hand, as the parameR
increases~i.e., the gap is reduced!, the rate of decrease of th
real part ofKn* (v) as the frequency grows is lessened. A
tually, for very small gaps~e.g.,R50.8) the real part of the
dynamic permeability, Re$Kn* (v)%, approaches 1 in a wide
range of frequencies and decays to zero for very large
quencies. Therefore, as the gap decreases, two main ef
are observed: the reduction of the dimensional dynamic
static permeabilities and the enlargement of the spectrum
perturbations that are able to pass through the fluid; likew
the relative phase between the flow and the pressure gra
decreases. Evidently, in the limitR→1, Kn(0)5Kn(v)50
and it can be shown from Eq.~17! that this occurs in such a
way thatKn* (vn* )→1.

It is illustrative to look at the different terms in Eq.~11!,
which establishes the balance among inertial, pressure,
cous, and magnetic forces in Fourier space. In dimension
form, this equation can be expressed as

2 ivn* V̂52M2
] P̂

] ẑ
1“̂

2V̂2M2V̂, ~19!

where V̂ and P̂ are normalized by a characteristic veloci
and pressure,U and sBo

2Ua, respectively. In turn, coordi-

natesr̂ and ẑ are normalized bya. In the absence of a mag
netic field (M50), the balance is established among the
ertial or local acceleration on the left-hand side of Eq.~19!
and the pressure gradient and viscous forces on the r
hand side. Due to the inertial term, the velocity field will n
generally be in phase with the pressure gradient. When
gap between the cylinders is reduced, viscous effects
increased as the boundary layers attached to each cyli
get closer. Therefore, for very small gaps, the accelera
term becomes negligible compared to the viscous te
which is only balanced by the pressure gradient, as in
static flow. Evidently, the acceleration term will also be ne
ligible whenvn* !1. Notice that as long as the inertial ter
has some influence, the dynamic permeability will relax
some ~large! frequency and a nonzero relative phase w
exist. Whenvn* @1, the flow behavior is more complicate
In that case, in the core of the flow, the acceleration term
dominant and is balanced by the pressure gradient, w
near the walls of the cylinders, thin boundary layers
formed where viscous effects are not negligible. It can
shown from an asymptotic analysis1 that for vn* @1, the dy-
namic permeability decreases as 1/vn* in the core and as

e2vn* /vn* in the boundary layers. Therefore, in the lim
vn* →`, Re$Kn* (vn* )%→0.

Let us turn our attention to the MHD case. Figure 2 sho

1The flow in the limit caseR50 is treated in Ref.@21#.
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the real and imaginary parts of the dynamic permeability
R50.1 and Hartmann numbers 0.1, 10, and 100. ForM
50.1 the magnetic interaction is negligible and the relax
viscous behavior is again observed. In turn, forM510, the
relaxation of the dynamic permeability is less pronounc
while for M5100, Re$Kn* (vn* )% approaches 1. In fact, it is
observed from Eq.~14! that Kn(v) reduces toK(0) when
M2@vn* . In that case, the acceleration force in Eq.~19!
becomes negligible, producing a quasisteady flow with w
differentiated regions: the core, where the magnetic forc
balanced by the pressure gradient, and the boundary la
@Hartmann layers with aO(M 21) thickness# where viscous
effects are important. From the asymptotic expressions
Bessel functions for large values of the argument, it is fou
that for M@1,

Kn~v!5K~0!5
pa4

M2
~12R2!, ~20!

which clearly vanishes asM→`. Here it is important to
stress that the conditionM→` enlarges the frequency rang
where the dynamic permeability approaches the static va

In the next section we turn our attention to the simpl
model of a viscoelastic fluid.

III. DYNAMIC PERMEABILITY IN A MAXWELL FLUID

In order to analyze the dynamic permeability of a v
coelastic fluid under an imposed magnetic field, we use
linear form of the Maxwell fluid, namely,

tm

]t

]t
52h“u2t, ~21!

where tm is the Maxwell relaxation time. In the limittm
→0, the Newtonian behavior~3! is recovered. Using Eqs
~2!, ~9!, and~21!, the equation of motion is obtained, namel

FIG. 2. Real and imaginary parts of the dimensionless dyna
permeability of a Newtonian fluid as a function of the normaliz
frequency parametervn* for R50.2 and different values of the
Hartmann numberM.
3-4
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tm

]2v

]t2
1

]v
]t

52
1

r S 11tm

]

]t D ]p

]z
1

h

r
“

2v

2
sBo

2

r S 11tm

]

]t D v. ~22!

Performing the time Fourier transform, we get

“

2V1bm
2 V5

~12 ivtm!

h

]P

]z
, ~23!

where

bm5H r

htm
F ~vtm!22

tm

t j
1 ivtmS 11

tm

t j
D G J 1/2

.

The solution to Eq.~23! that satisfies nonslip boundary co
ditions at the walls of the cylinders is given by

V~r ,v!5
~12 ivtm!

hbm
2 F12

J0~bmr !2CmN0~bmr !

J0~bma!2CmN0~bma!G ]P

]z
,

~24!

where

Cm5
J0~bma!2J0~bmb!

N0~bma!2N0~bmb!
.

Hence, calculating the average flow rate through Eq.~13!,
the dynamic permeability can be written as

Km~v!

52
pa4~12 ivtm!

aÃm

3H 12
2@J1~AaÃm!2CmN1~AaÃm!#

AaÃm@J0~AaÃm!2CmN0~AaÃm!#

2R2F12
2@J1~RAaÃm!2CmN1~RAaÃm!#

RAaÃm@J0~AaÃm!2CmN0~AaÃm!#
G J ,

~25!

where, in this case, the dimensionless parameters are g
by

Ãm5~vm* !21 ivm* 2
M2

a
~12 ivm* !, ~26!

vm* 5vtm , a5
ra2

htm
5

tv

tm
,

with a21 being the Deborah number. The parametera de-
termines whether the elastic or viscous behavior predo
nates. For the flow of Maxwell fluids in tubes in the absen
of electromagnetic interaction, it was established that for v
ues ofa bigger than the critical valueac511.64, a dissipa-
tive behavior prevails, while fora,ac the prevalent elastic
behavior leads to a resonance at a given frequency@6#. In this
01631
en
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paper, we consider values ofa much smaller than 1, so tha
elastic effects are intense though modulated by the magn
interaction and the gap between the cylinders. Cases w
a.12 are analogous to the Newtonian case analyzed in
previous section.

Similar to the Newtonian case, we normalize the dynam
permeability with the static permeability given by Eq.~25!
evaluated atvm* 50, i.e.,

Km* ~vm* !5
Km~v!

Km~0!
. ~27!

Evidently, when the Maxwell relaxation time vanishes (tm

→0), Eq. ~27! reduces to Eq.~15!, i.e., Km* →Kn* . Another
important limit is obtained when bothM→0 andR→0. In
such a case, we get the dynamic permeability reported
Ref. @7# for a viscoelastic fluid in a tube, namely,

lim
M ,R→0

Km* ~vm* !52
8~12 ivm* !

aÃ H 12
2J1~AaÃ!

AaÃJ0~AaÃm!
J ,

~28!

whereÃ5(vm* )21 ivm* . Figure 3 shows the real part of th
dimensionless dynamic permeability~27! as a function of the
dimensionless frequencyvm* for M50, a50.1, and differ-
ent values of the gap parameterR. The caseR50 calculated
from Eq.~28!, is also shown for comparison purposes. Sin
the magnetic interaction is absent, Fig. 3 displays essent
the effects of varying the space between the cylinders usin
fluid with predominant elastic behavior. The appearance
multiple resonant frequencies, where the real part of the p
meability increases, is observed. In all curves, the magnit
of the first peak is the highest and that of subsequent pe
steadily decays to zero, as in previous studied cases@6,7#.
Comparing the curveR50 with those withRÞ0, two main
effects can be readily attributed to the presence of an in
coaxial cylinder. First, the shift of the frequencies that le
to the enhancement of the real part of the dynamic per

FIG. 3. Real part of the dimensionless dynamic permeability
a Maxwell fluid as a function of the normalized frequency para
etervm* for different values of the dimensionless gapR. The mag-
netic field is absent and the Deborah number isa50.1.
3-5
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SERGIO CUEVAS AND J. ANTONIO del RI´O PHYSICAL REVIEW E64 016313
ability to larger values, and second, the presence of reso
frequencies of small intensity between two higher peaks
exceed the maximum values of the permeability obtained
the caseR50. Here, the smaller the gap the larger the d
ference. Notice that the first maximum for the caseR50.8 is
several orders of magnitude higher than the static value. T
fact might be important for lubrication studies under cyc
regimes. Although not shown, corresponding imaginary p
of Km* (vm* ) present also a shift in the phase frequencies w
respect to the single tube case@7#.

Figure 4 displays the effect of the magnetic interaction
the dynamic permeability. It shows the real part ofKm* as a
function of vm* for R50.3, a50.1, and different values o
the Hartmann numberM. Clearly, the effect of the magneti
field is totally dissipative. AsM grows from 0 to 1 the peak
of the dynamic permeability are attenuated. ForM51, only
the first peak persists and Re$Km* (vm* )% decays monotoni-
cally to zero for large frequencies. Notice, however, that
rate of decrease of the permeability is smaller the larger
Hartmann number. In the limit ofM→`, whatever the value
of a, the elastic behavior is completely inhibited by th
Ohmic dissipation andKm* →1 for smallvm* and goes to zero
whenvm* →`, as in the Newtonian case.

In the case of a single tube in the absence of a magn
field, a simple relationship between the maximum permea
ity values and the Deborah number was found@7#. In the
present case, however, the maximum value of Re$Km* (vm* )%
depends on three independent parameters, namely,a, M, and
R; therefore the determination of a relation between

FIG. 4. Real part of the dimensionless dynamic permeability
a Maxwell fluid as a function of the normalized frequency para
etervm* for different Hartmann numbers. The the dimensionless
is R50.3 and the Deborah number isa50.1.
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not a simple matter and lies beyond the scope of the pre
investigation.

IV. CONCLUSION

In this paper, we have extended previous investigati
on the dynamic permeability of flows in tubes by incorpor
ing new geometric aspects and the existence of electrom
netic interaction. Specifically, we explored the dynamic b
havior of the permeability of annular ducts saturated w
electrically conducting fluids, either Newtonian or Maxwe
ian, under a constant radial magnetic field. In the absenc
a magnetic field, the presence of the inner cylinder res
advantageous for flows of Newtonian fluids in the sense
the range of frequencies, where the dynamic permeab
values are close to the static value, is expanded. When
magnetic field is present, this frequency range is even wi
In fact, for high-magnetic field strengths the local accele
tion is negligible and the permeability becomes that o
quasisteady flow within a very large range of frequenci
This fact could find application in the enhancement of lub
cation systems using magnetic fields.

For Maxwellian fluids in the absence of a magnetic fie
the inner cylinder modifies the spectrum of resonant frequ
cies and changes the monotonic decay of the permeab
peaks. In fact, compared to the case of a single tube,
frequencies at which the dynamic permeability is enhanc
are shifted to larger values. Further, at some resonant
quencies, the maximum values of the permeability exc
those reached in the flow in a single tube@7#, a result that,
incidentally, may be of practial importance. It must b
stressed that in the particular case of a zero mean pertu
tion, no enhancement of the dynamic permeability will
produced. However, whenever a nonzero mean periodic
turbation produces a net flow rate, the choice of a press
pulse with the appropriate frequency may cause a dram
enhancement on the dynamic permeability according to
~27!. On the other hand, the existence of magnetic field
sults is disadvantageous for the enhancement of the dyna
permeability. In this case, the dissipative behavior of
magnetic field dominates over the elastic effects and a dra
reduction of the enhanced dynamic permeability is observ
Nevertheless, a wide frequency range that leads to dyna
permeability values higher than the static value is s
present.
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